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1. Abstract p—t O deALF —_—

I—this—paper—ve—model pultiple coordinated robot arms/by considering the arms (1) as
closed kinematic chains and {2) as a force constrained mechanical system working on the same
object simultanecusly. In both formulations a new dynamic control method is discussed. It is
based on a feedback linearization and simultaneous output decoupling technique. Applying a
nonli ear feedback and a nonlinear coordinate transformation, the complicated model of the
multiple robot arms in either formulation is converted into a linear and output decoupled
system. The linear system control theory and optimal control theory are used to design robust
controllers in the task space. The first formulation has the advantage of automatically
handling the coordination and load distribution among the robot arms. In the second
formulation, by choosing a general output equation we could superimpose the position and
velocity error teedback with the force-torque error fsedback in the task space simultaneously.

2. Intreduction

The notion of "multiple robot arms” originates from two everyday scenarios. The first
scenario is an authropomorphic one by noting that humans have two arms and hands and everyday
manual work is normally performed by two-handed humans. In fact, manual activities and tasks
are normally perceived and designed such that they assume two-handed humans; a one-handed
person is a handicapped person from that point of view. Thus, in order to raplace humans with
robots to perform normal manual activities it seems natural to visualize and design robots
with two arms and hands. The second scenario is an industrial one by noting that production
lines in industry assume an organized distribution of manipulative activities along the
production line that can be carried out by a distributed set of robot arms in a proper
arrangement.

Scenarios of multiple robot arms are also assumed and predicted for space applications in
a natural way. Space station assembly, maintenance and servicing will require the in-site
manual work of EVA astronauts in the initial operational configuration. This manual work also
includes the simultaneous activities of two or more EVA astronauts in the handling or
assembly of large structura. elements in space., Most satellite servicing and maintenance
operations also assume two-handed manual work of EVA astronauts. Thus, the objective of
decreasing EVA activities in Earth orbit by introducing and increasing robot activities there
requires the consideration and the design of the control of multiple robot arms.

The technically interesting and challengine problems in the control of multiple robot
arms arise when (i) the work envelopes of two or more robot arms overlap and (ii) two or more
robot arms simultaneously work on the same object in a presumably cooperative manner to
perform a given task which cannot be performed by one arm only.

The Control problem of *wo or multiple robot arms has been studied by many investigators
(1-12). Although the control problem of two or multiple arms is complex, some examples of
applications, such as a two-arm lathe loader, a two-arm robot press loader/unloader, and two
single-arm robots working together to handle stamping press loading and unloading, are given
by Chimes (1]. In these applications, the problem is solved specifically. The system design
is based on a solid understanding of the problem.

Hemami and Wyman [2] investigated the problem of force control in closed chain dynamic
systems. In their work, the dynamic system is linearized about an operating point and linear
feedback is used to maintain the forces of constraints. The validity of the method is
restricted to a rather small neighborhood of the operating point in which the dynamic system
can be linearized. Orin and Oh (3] considered the control of force distribution in robotic
mechanisms containing closed kinematic chains. The problem of solving for the input joint
torques from a given trajectory is underspecified. The linear programming has been used to
obtain a solution which optimizes a weighted combination of energy consumption and load
balancing. The dynamic equations of the mechanisms are excluded from the control method. The
stability of the control algorithm is in no way ensured. Ishida [4] developed a force control
technique which uses a wrist force sensor to measure the interactive force between two arms.
The parallel transfer task and the rotational transfer task are considered only. The control
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algorithm is derived for both master/slave mode and indistinguished mode (the same status
mode). Pujii and Kurono (5) proposed the method of virtual reference. This method consists
of the identification of the joint control mode required to perform a desired Cartesian
motion. The control loop at each joint uses only position feedback and no compensation for
the coupling between joints.

Alford and Belyeu (6] have designed a hierarchical computer control structure for two
PUMA robot arms operating in a master/slave mode. The proposed coordinated control system has
joint position predictors, a coordinate transformation, and a slave command modifier. An
explicit control algorithm is derived and tested/implemented for an experimental path: a
straight line in the vertical direction. However, the question on how to define the
prediction function, the transformation, and the modification function is left open in the
paper, and the dynamics of the arms is excluded from the algorithm.

When two robot arms work on an object certain constraints must be satisfied in order to
carry out a smooth, coordinated operation. 2zheng and Luh (7] have derived a set of holonomic
constraints on positions and orientations of the end effectors for two robots in three
specific working conditions, namely, handling a rigid-body object, handling a pair of pliers,
and handling an object having a spherical joint. The result is extended to the constraints
between joint velocities and accelerations of the two robots for the three abovs mentioned
cases (8]).

Considering tasks of transferring an object by holding it with two robot arms, Lim and
Chyung (9] introduced a position control method using kinematic relations between the object
and the two robot arms. By first specifying the trajectory of the object, the differential
changes of each robot hand are computed from the differential changes of the planned path.

The commands or differential changes of each joint of the two robot arms are generated by
applying the inverse Jacobian matrix. The method is simple but applicable only when the
involved motion is very slow., #reund and Hoyer [10-12] proposed a hierarchical control method
for collision avoidance in multi-robot systems. The method adopts a hisrarchical coordinator
and is systematic. However, an algorithm is needed to design the couplings among robots.
Vukobratovic and Potkonjak (13] described a method which can be used to obtain the closed
chain dynamics of two coordinated robot arms. However, the reaction force and reaction moment
between the two arms are retained in the final equations. Hayati [20] extended the idea of
hybrid position/force control to the multi-arm case. Based on equations of motion for a
multi-arm syster, which are derived in a constrained coordinate frame located at the grasped
object, a controller is designed to cooperate n robot arms such that the load is shared among
the arms in a non-conflicting way. A minimization of the magnitude of forces and torgques is
performed to decide how much each robot arm should contribute. It appears that the existing
coordinated control methods fall in lack of either systematic synthesis of the control system
or full censideration of robot arm dynamics.

In this paper we concentrate on the application of nonlinear feedback to the control of
multiple robot arms. Previously we derived a general algorithm for the control of a single
rigid robot arm through nonlinear feedback and state transformation resulting exact system
linearization and simultaneous output decoupling [15,16]. Our control design technique
elevates the robot arm servo problem from the joint space to the task space with three
important consequences. (i) On the joint level our scheme computes and commands drive forces
or torques on their actuator-equivalent quantities (current, voltage, pressure). (ii) The
robot arm system in the task space is considered as a linear system, and the powerful tools of
linear control theory, including optimal control, are applicable to robot arm controller
design in the task space. (iii) Our controller can directly respond to task space commands
provided that these commands are formulated in form of closed time functions. The question
discussed in this paper is: how can our control method be applied to the control of multiple
robot arms.

We are discussing two modeling approaches. In the first approach, we model the multiple
arm system as a single system, that is, as a closed loop xinematic chain. In the second
approach we retain the single arm models, but we introduce task constraints and force-moment
measurements in the control scheme. The paper concludes with a brief discussion of
computational architectures that are needed to implement ocur control technique for the control
of multiple robot arms.

3. sed Chajin Fo atio

As the first approach to coordinated control of multiple rcbot arms, we consider the
multiple robot arms as a single mechanical system consisting of kinematic closed chains. For
tasks of lifting a heavy workpiece using robot arms, two or more robots are required if the
workpiece is out of loading limit of any available robot arm. Suppose that m robot arms are
used in such a task and that they all grasp on the same object (workpiece) in order to lift
it, turn it, etc. Our primary concern is to obtain a dynamic model of these robots for the
control purpose. Since they grasp on the same object, the dynamic behavior of one robot is
not independent of the dynamic behavior of the other robots any more. A unity of mechnical
system is rather formed by the robot arms involved and by the grasped object.

We will derive the Lagrange's equations of motion for this mechnical system. Those
equations will serve as a model of the system to design control algorithms. For the m robots

180



of consideration, ve name them robot 1, robot 2, ..., and robot m, respectively. We assume
that robot i has ny 1inks. We also assume that each robot firmly grasps the cbject so that

thers is no movement between its end effector and the object. Closed chains are formed in
such a configuration by the m robot arms, the cbject, and the ground, Notice that the object
and the last links of the robot arms become a single link. From the Kutzbach-Grubler
criterion {17}, the degrees of freedom of a spatial linkage structure connected by joints with
esach joint possessing one degres of freedom are given as follows

p = 6(i-1) - 5] 1)

where { is the number of links and j is the number of joints. This formula reflects the fact
that each moving link has six degrees of freedom and the fixed link (the ground) has nons, and
that each joint of one degrees of freedom causes a loss of five degrees of freedom for a link.
For our case of m robots, the degrees of freedom of this entire mechanical system is then

6 (n, =1 1l L] n n, ) 6 (2)
- T - + - L - - 6B 4+
P =Sl hot) v ] kw1 )

wvhere Ny is the number of links of robot k. If three robot arms are involved to perform a

task, Table 1 shows 10 different combinations of three robot arms with five, six or seven
degrees of freedom.

Before proceeding, let us define some notations that will be used in the rest of this
section.
ei i

2 o ]! joint variables of robot i
i

- rat
[91 8

= [(91)' (62)' cee (9-)']' : joint variables of the mechanical system

9= (9 93 --- qp]' : generalized coordinates

T = [r1 Tg eee rp]' : generalized forces corresponding to ¢q
i 1.4 i, .

F*' = [Fl rz e r"il : joint force/torque of robot i

F = [(Fl)' (Fz)' e (F‘)']' : joint force/torque of the mechanical system

n-n1+n2+...+n-.

The generalized coordinates ¢ can be chosen arbitrarily as long as they are linearly
independent of each other. They are functionally related to the jo.nt variables 8. We denote
the relation by

q=Q(3) . 3)

Knowing the generalized coordinates q, the configuration of the mechanical system, thus the
joint variable 9, is uniquely determined. We denote such inverse relation by

7= q) . (4)

With the above notations, the Lagrange's equations of motion for the mechanical systea are
described by

2
=
2 . 32 39 '
= el A SR G U

(32, 2 X 20

2
.2 iq a+ =
36 39 ° 1830

320
& —0 ¢
L 3q .

{i=12,2, ..., p (5)

where L is the Lagrangian of the whole mechanical system. Equation (5) is a generalization of
the equations of motion of two robot arms presented in [14].
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We assign a ocoordinate frame to esch link of every robot arm. We locate a world
coordinate frame in the common work space of the m robots. In the process of expressing the
xinetic and potentisl energies of the mechanical system, we divide the mass of the object into
m parts. BRach robot is responsible for one part of the object mass by adding it to the mass
of the last link. After carrying out the derivations of the lagrangian function, ve obtain,
the dynanic equations of the mechanical system .

D(Q)G + B(q, &) + G(@) =T F (6)
vhere
D(q) = I} D (ol I,

aa.
Jo " %

ot

D(e) = o? O

pf = (ij) is the inertia matrix of robot r

Ry Tt ard)
Trace (—E— If -(—L—)

T
x=max(i,3) aei‘ k ae;'

r
Diy =

E(q,4q) = 33 D (o(q)) . + J(j) . I, 4q

¢ —3" 4 L 43 E

n r r
r d Ty r AT
zijk - L Trace ( . T s r )
s=max(i,3, k} 3ekaej aei
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¢t C 6 ]
¢? .
' G(q) = - Jé . . ¢f = . is the gravity force of rolot r
¢t Gk
e nr =l
n r
r aT,
r_ r Tk =r
ci L ™ 9’ r Ty
kel ] 01

r r ,r r r -
In the above definitions, Ti - A°1 Ajg oo A(L-l)i’ where Aij is the Denavit-Hartenberg

homogeneous trarsformation matrix from coordinate frame i to coordinate frame j of robot r; n{

is the mass of link 1 of robot r; Ef is the mass center of link i of robot r; If is the

.pseudoinertia matrix of link i of robot r; g is the acceleration of gravity, defined to be a
4x1l column vector with the last component being equal to zero.

Equation (6) characterizes the dynamic behavior of the whole mechanical system. Hovever,
this equation is nonlinear, coupled, and complicated. It poses great difficulty in controller
designs. We propose to linearize and output decouple the system (6) using a nonlinear
toodbacf and a nonlinear coordinate transformation. Let us introduce a state space variable x
by setting

xl - qy . x1+p - qi ' i=2, 2, ..., P

2,
x [x1 Xy oee xp]' ) b4 [xp+1 e xzp]'
o o
x -
x2
The dynamic equation (6) can be written as
x2 (4]
R = + F
-0~ (xh) (B (xt, x%) +6 (xY) ] o~ L(x?) 3
= f£(x) + g(x)F (7)

We take the position (orientation) of the object handled as the system output
- X, . 1 1 1
Y h(x™) [hl(x ) hz(x } e hp(x )1, (8)
For the nonlinear feedback, the so-called decoupling matrix is [15,16]
A(x) = 7, (x}) o~ xh 3
where Jh is the Jacobian matrix of h. The nonlinear feedback has the form

F o= a(x) + 3(x) u

where 1(x) and 3(x) are determined from the following two algebraic equations (15,16)

A(x) (x) = -Lih (9)

A(x) 3(x) = v. {10)
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p
71 = (11 400 1) im a :I.xl1 new vector with all entries equal to 1 and Ry, i=1, ... p, are

chosen such that n > 0 and I1+ L PR IR 'p = n, The index n is associated vith the fact

that & total number of n independent actuators (inputs) are to be divided into p groups to
control p outputs. The required nonlinear coordiante transformation is given by [18,16]

O(X) L (hl Lthl ce e hp L!hp]. .

Since both equations (9) and (10) are underdetermined, there are infinite many solutions for

them. Any solution ssrves the purpose of linearisation and decoupling provided that g(x) is
invertible. A solution to equation (9) is given by ([18)

ox) = = A*(x) Lgh(x) (1)

wboroih+ - A'(AA')'1 is the generalized inverse of A(x). The general solution to equation
(10) is (18)

8(x) = AY(x)Y + (T ~ A*A) H (12)
where H is an arbitrary matrix which is to be chosen to make 8(x) invertibls.

After applying the nonlinear feedback and the nonlinear coordinate transformation, the

original system (7) with output (8) is converted into the following linear and decoupled
system

_t = Az + Bu (13a)
y = Cs . (13b)
where
A B c
1 1 1
. O . 0 . 0
A= 0 . . B = . B C= .
. o - 0
) Bp e

0 1 o]
Ai-[o 0] ’ 51- [Yi] ’ Cin [10] ’ 1-1' ceoy Po

Note that the obtained linear system (13) consists of p independent subsystems. The control
problem af the whole mochanical system is then simplified to a design problem of individual
subsystems. 7The ith subsystem is defined by

214 0 1 211 0
. . ud (14a)
%1 0o o Z3i a2 1
z
y = (1 0] [ 2"1}, L=1, ..., p (14b)
Z2
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where ul e the ith group input with =, comsponents. To stabilize the subsystem (14), we
introduce a constant feedback ni - x* :1 + vi with

0 0

Ky Kyg
where zi ol £ PYPRY LPYR AT and vi is the nev reference input. With such a constant feedback,

subsysten (14) becomes

LPYERY o 1 2241 0 .
- + v (15a)
LYY “kyy "Ry 231 v,
$31-1
yy=( 0| , ’ lel, «ocs Py (15b)
21
or in compact form
2l a Xi PPN B, vi
yi - Ci li

where ii can be easily identified from equation (13a). For the above system (13), the damping
ratio £ and the natural frequency w, are related with the feedback gains by

2 -
“n = %4y 3Ly =k,

We now consider equation (13) as tha new mathematical model of the real system which is
exactly linearized, cutput decoupled and stabilized. The desired (nominal) input to each
subsystem can be derived from the following system "

d a

2 T o 1 25, 0

:1 1. gi 1 i whd (16a)

2T “kyy <Ky LY i
a

q Z21-1
Yy - (1 0}f 4 ’ =1, ..., P (16b)

Za4i

where the superscript "d* indicates "desired® quantities. From equation (16), the desired
input can be obtained in terms of the desired task space trajectory.

v, whia e+ kg, 99+ %y ¥§ o i=1, ... p (17)

It_iu observed that the left hand side of equation (17) is the sum of By inputs in task space
computed from the planned trajectory. For a given planned trajectory, at any instant time the
right hand side of equation (17) is a given value. Applying the generalized inverse, we
obtain (18]

i.4 1

vHS = vy vi)' (yg + Xy, yg + kg yg). (18)

Note that in our control design methodology the actual control vector is the task spacs
command as formulated by equation (17). On the joint level, our methodology computes drive
forces or torques for the individual actuators, and the servo design is on the task level.

Let the output error be defined as follows:
185



a
S |l Y17 Yy

e, = a
4 *; -9

vhere Yy and 91 are the real (measured) values, and yg and y} are the desired values. To
eliminate the output error o, Ve utilize an optimal error correcting control loop by
minimizing the following cost functional

T
J=- Xo tcavhrn ovbe e;(t)! Q e (t)] dt + o, (T)'8 &y (T).

The optimal correction is given by

i

vl e r71 By p(e) o (t) (19)

where P(t) is a positive definite solution of the Riccati equation

P(e) = =p.2) Ay = K| P(t) + P(t) B, R™L By P(t) - Q
P(t) = 8,

i 0 1
! ['k11 k42
The overall structure of the controller design is depicted in Figure 1.
4. Force Control Approach
In this approach, we consider the dynamics of each robot separately, but vwe pose

constraints on the dynamic equations by introducing the interactive force and interactive
noment among the robot arms.

with

We have propi:sd a force control approach to the coordination of two robot arms
performing a single task (19]. The coordination between two robot arms is achieved by
monitoring the interactive force and moment at the end effectors. Now we extend this method
to multi-arm case. .

Suppose that m robot arms (m > 2) are working on an object, e.g., lifting or turning a
heavy workpiece. The problem we are dealing with is to find a control algorithm for m robots
such that the task is performed in a coordinated fashion. We assume that each robot has a
force (torque) sensor installed at its end effector. Using force control approach, the
coordination among m robot arms is realized by regulating the force and moment applied to t -

object by each robot. With the aid of proper task planning, m robot arms are able to move .
a non-conflicting way.

The dynamic equations of a system of m robot arms are given as follows:
oyah gt + eyt ah rapeh e bt 2, e

vhere q1 is an ni-dlnonlional joint variable vector of robot i, ny is the degrees of freedom

i

of robot i, P~ is an ni-dinensional vector of the force and moment measurements of robot i,

ri is an ni-dincnnional joint torque (force) vector of robot i, and Iy is the Jacoblan matrix
of robot i.

Now we introduce a state variable x by letting

i i oo qi'

x" =q, i=1, ..., n,

1
X" o= (%, %X, ... xnlj' - [qi qy .- qﬁll' - ql:
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o - (g 41 o "nlo-n:" - 1q] - ‘:3" -,

> - ["n1+...+n._1+1 SRR SEER{ R ‘:-J' -q,

x.+1 - (xn’i o xn’nll' L (qi X q}‘ll. - Ql
2
w - (xn#nl*fl cen xn+n1+n2]' = [Qi XX Q:z]' - Q’

2 ?
X" - txn+n1+...+n.__1+1 ees Xgpl' = [Q: o Q:.]' - ¢,

vhere n = LI UL SFTRIE O (Y Then x is a 2n-dimensional vector partitioned into im blocks

o 1 =

X @ (X Xy een Xy Xy oees Xpo)tw e ,
xl+1

2%

X e (X o0 %)

with the first m blocks (corresponding to the first n components §) representing the joint
positions of m robots and with the last m blocks repressnting the joint valocities of a
robots. )

The dynamic equations of m robnts can nov be written in terms of state variable x as
follows:

1 1l
- L o 5 - -
& ‘xZn [ Bt N
£ = - + .

g -D;l(xl) £!1<x1'xl+1)w. (xl)!'l] Dzl(xl)
' ' L "

i I LNy BT B Lot
or % = £(x) + g(x)T ' (20)

wvhere £ ang g can be easily identified from the above equation. We take the output equations
of the form
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r n! A B w; Pt u; rt -
2
h u; Pendp
y-b(x) - . - o
. . (21)

e -

n

h L w; S N= " B
vhere w:;. W%, {i=1, ..., m, are the veighting matrices, and p" is the position and
orientation vector of robot i in the world coordinate frame. The dimension of output vector y

is n.

Equation (20) represents a nonlinear and coupled system with output (21). Using e
nonlinear feedback T = a(x) + B(x)u and a nonlinear coordinate transformation T(x), we are
able to linearize and output decouple the system (20). The a(x) and g(x) in the nonlinear
feedback are given by

a(x) = -A"}(x) L: h (22)

B(x) = A"l(x) (23)

wvhere

I
O

A(x) =

T By 7
Lehy
T(x) = ‘ (24)
h
n
L Leby

Application of the nonlinear feedback and the nonlinear coordinate transformation converts the
system (20) with the output (21) into the following linear and decoupled system

2 = Az + Bu (25a)
y=¢z (25b)
where

z-[zl...zzn]' . u-[ul...un]' B y-[yl...yn]' P

A B c
1l
A = -. 0 , B =] -, 0 |, .. Y., 0
o - 0 . o -
A L B, <,
0 1 0]
M=lo ] ' By = 1 ¢ =10 , i=1,2, ..., n.
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Note that system (235) consists of n independent subsystems. Likewise as in the closed chain
formulation, for each subsystem we can design a constunt feedback to stabilize it and design
an optimal error-correcting loop to eliminate the output errors. The overall controller
structure is shown in rigure 2.

5. conclusion

Our approaches to the control problem of multiple robot arms are motivated by the desire
of making rigorous use of the dynamics of robot arms involved in the task. The closed chain
approach is initiated from the fact that the dynamic behaviors of the robot arms are not
independent of each other any more if they grasp on a common object. In this approach, the
multiple robot arms are modeled as a single mechanical system by choosing a set of generalized
coordinates whose number equals the number of degrees of freedom of the whole system. Figure
1 shows the schematic structure of the controller for the closed chain approach as implemented
on computers. Froam the initial physical task, the task planning of the upper left block in
rigure 1 produces a trajectory in the task space expressed as a smooth function of time. The
command generator block realizes equation (18) and yields the desired reference input. The
lowver left block is the implementation of the optimal error correction described by equation
(19). It takes the task space error as its input, and produces the optimal correction as its
output. The Q( 9) block to the right of the multiple robot arms establishes the generalized
coordinates as well as their time derivatives from the measured joint positions and velocities
of the robot arms. The bulk of the controller is the nonlinear feedback block which computes

the joint driving torques or forces. Because the dynamic projection functions Di, B, and Gi

are derived in terms of the joint variables, it may be convenient to use the joint variables
in addition to the generalized coordinates for computing the nonlinear feedback.

Different from the closed chain approach, the force control approach assumes that each
robot arm has a force and moment sensor located at the end effector. The rorce and morment
measurements are introduced into the dynamic equations and output (task) equations. This is

schematically depicted in Figure 2. The measurements Fl, Fz, eee, F® are transmitted to the
nonlinear feedback block, the output h block, and the coordinate transformation T block. The
three blocks to the left of the nonlinear feedback block in Figure 2 are structurally similar
to those in Figure 1.

Using the results from differential geocmetric system theory, we are able to linearize and
to decouple the complicated dynamic equations of multiple robot arms including the object held
by the arms. Independent of the approach being taken, we eventually deal with a linear and
decoupled system. Thus we can have a unified design technique for coordinated control of
multiple robot arms.

It should be noted that both methods used in this paper are systematic and are robot arm
independent. The most important feature is that the control algorithms are task independent,
that is, there is no need to change the structure of the.controller or even the parameters of
the controller from task to task. As natural as would be, the change of tasks only causes the
adjustment of the input command which is conveniently given in the task space rather than i1
the joint space. The two control methods can be used in slightly different situations. For
example, if the robot arms are loosely connected through the object, the force control
approach is preferable; if the robot arms are mechanically locked while transferring the
object, the closed-chain approach is more likely a solution.

Each control scheme naturally leads itself for computational implementation using
distributed computing system, possibly in multi-bus architecturs. Figures 1 and 2 provide a
high level structure of computational implementation requirements. The details of the
implementation require a deeper analysis.
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Table 1. Degrees of freedom of the closed chains formed by three robot arms

cases n, n, ny i b] B enyen, P
1 7 7 ? 20 a1 E2Y [}
2 . 7 7 19 30 20 .
3 s L) 7 18 i 19 7
4 H] 7 7 py s 19 19 7
E} 5 6 7 17 18 18 O
¢ € [} [ 17 18 18 [
? s [ [} 16 17 17 ]
[} s s 7 16 17 17 L)
9 H) 3 ¢ 18 16 16 4

10 L) L) 3 14 13 13 3
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Fig. 1 Schematic Control Structure of the Closed Chain Approach
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Pig. 2 Schematic Control Structure of the Force Control Approach
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